专注收集记录技术开发学习笔记、技术难点、解决方案
网站信息搜索 >> 请输入关键词:
您当前的位置: 首页 > 网络通信

论文札记《Fully Convolutional Networks for Semantic Segmentation》

发布时间:2011-07-03 06:57:23 文章来源:www.iduyao.cn 采编人员:星星草
论文笔记《Fully Convolutional Networks for Semantic Segmentation》

【论文信息】

《Fully Convolutional Networks for Semantic Segmentation》

CVPR 2015 best paper

key word: pixel level, fully supervised, CNN

【方法简介】

主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation。    

 我们已经有一个CNN模型,首先要把CNN的全连接层看成是卷积层,卷积模板大小就是输入的特征map的大小,也就是说把全连接网络看成是对整张输入map做卷积,全连接层分别有4096个6*6的卷积核,4096个1*1的卷积核,1000个1*1的卷积核,如下图:

QQ截图20150731222513.png

接下来就要对这1000个1*1的输出,做upsampling,得到1000个原图大小(如32*32)的输出,这些输出合并后,得到上图所示的heatmap。

【细节记录】

dense prediction

这里通过upsampling得到dense prediction,作者研究过3种方案:

1,shift-and-stitch:设原图与FCN所得输出图之间的降采样因子是f,那么对于原图的每个f*f的区域(不重叠),“shift the input x pixels to the right and y pixels down for every (x,y) ,0 < x,y < f." 把这个f*f区域对应的output作为此时区域中心点像素对应的output,这样就对每个f*f的区域得到了f^2个output,也就是每个像素都能对应一个output,所以成为了dense prediction。

2,filter rarefaction:就是放大CNN网络中的subsampling层的filter的尺寸,得到新的filter:

QQ截图20150731224817.png

其中s是subsampling的滑动步长,这个新filter的滑动步长要设为1,这样的话,subsampling就没有缩小图像尺寸,最后可以得到dense prediction。

以上两种方法作者都没有采用,主要是因为这两种方法都是trad-off的,原因是:

对于第二种方法, 下采样的功能被减弱,使得更细节的信息能被filter看到,但是receptive fileds会相对变小,可能会损失全局信息,且会对卷积层引入更多运算。

对于第一种方法,虽然receptive fileds没有变小,但是由于原图被划分成f*f的区域输入网络,使得filters无法感受更精细的信息。

3,这里upsampling的操作可以看成是反卷积(deconvolutional),卷积运算的参数和CNN的参数一样是在训练FCN模型的过程中通过bp算法学习得到。

fusion prediction

以上是对CNN的结果做处理,得到了dense prediction,而作者在试验中发现,得到的分割结果比较粗糙,所以考虑加入更多前层的细节信息,也就是把倒数第几层的输出和最后的输出做一个fusion,实际上也就是加和:

QQ截图20150731230431.png

这样就得到第二行和第三行的结果,实验表明,这样的分割结果更细致更准确。在逐层fusion的过程中,做到第三行再往下,结果又会变差,所以作者做到这里就停了。可以看到如上三行的对应的结果:

QQ截图20150731230713.png

【实验设计】

1,对比3种性能较好的几种CNN:AlexNet, VGG16, GoogLeNet进行实验,选择VGG16

2,对比FCN-32s-fixed, FCN-32s, FCN-16s, FCN-8s,证明最好的dense prediction组合是8s

3,FCN-8s和state-of-the-art对比是最优的,R-CNN, SDS.   FCN-16s

4,FCN-16s和现有的一些工作对比,是最优的

5,FCN-32s和FCN-16s在RGB-D和HHA的图像数据集上,优于state-of-the-art

【总结】

优点

1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。

2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."

3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map。

缺陷

根据论文的conclusion部分所示的实验输出sample如下图:

QQ截图20150731231604.png

可以直观地看出,本文方法和Groud truth相比,容易丢失较小的目标,比如第一幅图片中的汽车,和第二幅图片中的观众人群,如果要改进的话,这一点上应该是有一些提升空间的。


版权声明:本文为博主原创文章,未经博主允许不得转载。

友情提示:
信息收集于互联网,如果您发现错误或造成侵权,请及时通知本站更正或删除,具体联系方式见页面底部联系我们,谢谢。

其他相似内容:

热门推荐: